Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(3): e202300744, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055188

RESUMO

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Assuntos
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Peptídeos/farmacologia , Sítios de Ligação
2.
Chembiochem ; 24(20): e202300522, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37489880

RESUMO

Multicolor labeling for monitoring the intracellular localization of the same target type in the native environment using chemical fluorescent dyes is a challenging task. This approach requires both bioorthogonal and biocompatible ligations with an excellent fluorescence signal-to-noise ratio. Here, we present a metabolic glycan labeling technique that uses homemade fluorogenic dyes to investigate glycosylation patterns in live cells. These dyes allowed us to demonstrate rapid and efficient simultaneous multilabeling of glycoconjugates with minimum fluorescence noise. Our results demonstrate that this approach is capable of not only probing sialylation and GlcNAcylation in cells but also specifically labeling the cell-surface and intracellular sialylated glycoconjugates in live cells. In particular, we performed site-specific dual-channel fluorescence imaging of extra and intracellular sialylated glycans in HeLa and PC9 cancer cells as well as identified fluorescently labeled sialylated glycoproteins and glycans by a direct enrichment approach combined with an MS-based proteomic analysis in the same experiment. In conclusion, this study provides multilabeling tools in cellular systems for simultaneous site-specific glycan imaging and glycoproteomic analysis to study potential cancer- and disease-associated glycoconjugates.


Assuntos
Glicoproteínas , Proteômica , Humanos , Corantes Fluorescentes/metabolismo , Glicoconjugados/metabolismo , Polissacarídeos/metabolismo
3.
Sci Adv ; 9(3): eade4809, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652525

RESUMO

The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.

4.
Cell Biosci ; 12(1): 190, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456994

RESUMO

BACKGROUND: Pregnenolone (P5) is a neurosteroid that promotes microtubule polymerization. It also reduces stress and negative symptoms of schizophrenia, promotes memory, as well as recovery from spinal cord injury. P5 is the first substance in the steroid-synthetic pathway; it can be further metabolized into other steroids. Therefore, it is difficult to differentiate the roles of P5 versus its metabolites in the brain. To alleviate this problem, we synthesized and screened a series of non-metabolizable P5 derivatives for their ability to polymerize microtubules similar to P5. RESULTS: We identified compound #43 (3-beta-pregnenolone acetate), which increased microtubule polymerization. We showed that compound #43 modified microtubule dynamics in live cells, increased neurite outgrowth and changed growth cone morphology in mouse cerebellar granule neuronal culture. Furthermore, compound #43 promoted the formation of stable microtubule tracks in zebrafish developing cerebellar axons. CONCLUSIONS: We have developed compound #43, a nonmetabolized P5 analog, that recapitulates P5 functions in vivo and can be a new therapeutic candidate for the treatment of neurodevelopmental diseases.

5.
Carbohydr Res ; 521: 108662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099721

RESUMO

Polygonatum odoratum is a perennial rhizomatous medicinal plant and different plant parts have been used in the treatment of various ailments. Herein, we have investigated the structural compositions of rhizome, leaf, and stem cell walls. We found 30-44% of polysaccharides in these wall preparations were cyclohexanediaminetetraacetic acid (CDTA) extractable, the proportion of heteromannans (HMs) in the rhizome is nearly three-fold compared to that of the leave and stem. The pectic polysaccharides of the rhizome are also structurally more diverse, with arabinans and type I and type II arabinogalactans being richest as shown by linkage study of the sodium carbonate (Na2CO3) extract. In addition, the 2-linked Araf was rhizome-specific, suggesting the cell walls in the rhizome had adapted to a more complex structure compared to that of the leaf and stem. Water-soluble polysaccharide fractions were also investigated, high proportion of Man as in 4-linked Manp indicated high proportion of HMs. The 21.4 kDa pectic polysaccharides and HMs derived from rhizome cell walls induced specific immune response in mice macrophage cells producing IL-1α and hematopoietic growth factors GM-CSF and G-CSF in vitro.


Assuntos
Polygonatum , Animais , Parede Celular , Fator Estimulador de Colônias de Granulócitos/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Camundongos , Extratos Vegetais/química , Folhas de Planta , Plantas , Polygonatum/química , Polissacarídeos/análise , Polissacarídeos/farmacologia , Rizoma/química , Água/análise
6.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955894

RESUMO

Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.


Assuntos
Fator de Crescimento Epidérmico , Simulação de Dinâmica Molecular , Sistemas CRISPR-Cas/genética , Análise por Conglomerados , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Células HeLa , Humanos , Ligantes , Neuraminidase/genética , Neuraminidase/metabolismo , Fosforilação
8.
Org Lett ; 24(25): 4694-4698, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727008

RESUMO

We demonstrate that dibenzocyclooctendiones (DBCDOs) are efficient chemical reagents for the site-specific labeling of arginine-containing biomolecules. Unlike the commonly used probes, DBCDOs undergo an irreversible ring-contracted rearrangement with the guanidinium group on arginine residues under mild reaction conditions. The regioselective dual-labeled arginine residues were obtained in a one-pot reaction with our tested substrates. The efficiency of DBCDOs reactions and their ease of synthesis make DBCDOs an attractive choice for the site-selective bioconjugation of arginine.


Assuntos
Arginina
9.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35489334

RESUMO

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Assuntos
Cannabis , Doenças Cardiovasculares , Alucinógenos , Analgésicos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Células Endoteliais , Genisteína/farmacologia , Genisteína/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos , Receptor CB1 de Canabinoide , Receptores de Canabinoides
10.
J Org Chem ; 87(8): 5339-5357, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35377640

RESUMO

N-Glycans are major constituents of several cellular glycoproteins. One-pot strategies for the synthesis of N-glycans are crucial for the rapid generation of pure samples to determine their biological functions. Herein, we describe a double one-pot strategy for the synthesis of N-glycans assisted by an IM-MS analysis approach for rapid screening of optimized glycosylation reaction conditions. This research includes triflate-mediated direct ß-mannosylation and tandem glycosylation in a one-pot strategy for the synthesis of the challenging N-linked trisaccharide core ß-5. Furthermore, a one-pot sequential glycosylation of the N-linked trisaccharide core 7 furnishes diverse high-mannose type N-glycans with excellent stereo- and regioselectivities. In particular, ion mobility-mass spectrometry-based quantitative analysis is applied to identify the stereo- and regioselective outcomes of the crude reaction mixtures to develop a highly efficient one-pot protocol.


Assuntos
Oligossacarídeos , Polissacarídeos , Glicosilação , Espectrometria de Massas , Oligossacarídeos/química , Polissacarídeos/química , Trissacarídeos
11.
Org Lett ; 24(15): 2889-2893, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35385278

RESUMO

We report an efficient and mild tandem catalytic process for the synthesis of functionalized pyrrole-3-carbaldehydes. These compounds were obtained by a one-pot three-component reaction of 5-bromo-1,2,3-triazine, terminal alkynes, and primary amines via a palladium-catalyzed Sonogashira coupling reaction, and then annulation through a silver-mediated reaction of the resulting alkynyl 1,2,3-triazines allowed for access to the multifunctionalized pyrrole-3-carbaldehydes.

12.
J Biomed Sci ; 29(1): 20, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35313878

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a worldwide cancer with rising annual incidence. New medications for patients with CRC are still needed. Recently, fluorescent chemical probes have been developed for cancer imaging and therapy. Signal transducer and activator of transcription 1 (STAT1) has complex functions in tumorigenesis and its role in CRC still needs further investigation. METHODS: RNA sequencing datasets in the NCBI GEO repository were analyzed to investigate the expression of STAT1 in patients with CRC. Xenograft mouse models, tail vein injection mouse models, and azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were generated to study the roles of STAT1 in CRC. A ligand-based high-throughput virtual screening approach combined with SWEETLEAD chemical database analysis was used to discover new STAT1 inhibitors. A newly designed and synthesized fluorescently labeled 4',5,7-trihydroxyisoflavone (THIF) probe (BODIPY-THIF) elucidated the mechanistic actions of STAT1 and THIF in vitro and in vivo. Colonosphere formation assay and chick chorioallantoic membrane assay were used to evaluate stemness and angiogenesis, respectively. RESULTS: Upregulation of STAT1 was observed in patients with CRC and in mouse models of AOM/DSS-induced CRC and metastatic CRC. Knockout of STAT1 in CRC cells reduced tumor growth in vivo. We then combined a high-throughput virtual screening approach and analysis of the SWEETLEAD chemical database and found that THIF, a flavonoid abundant in soybeans, was a novel STAT1 inhibitor. THIF inhibited STAT1 phosphorylation and might bind to the STAT1 SH2 domain, leading to blockade of STAT1-STAT1 dimerization. The results of in vitro and in vivo binding studies of THIF and STAT1 were validated. The pharmacological treatment with BODIPY-THIF or ablation of STAT1 via a CRISPR/Cas9-based strategy abolished stemness and angiogenesis in CRC. Oral administration of BODIPY-THIF attenuated colitis symptoms and tumor growth in the mouse model of AOM/DSS-induced CRC. CONCLUSIONS: This study demonstrates that STAT1 plays an oncogenic role in CRC. BODIPY-THIF is a new chemical probe inhibitor of STAT1 that reduces stemness and angiogenesis in CRC. BODIPY-THIF can be a potential tool for CRC therapy as well as cancer cell imaging.


Assuntos
Neoplasias Colorretais , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Oncogenes , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
13.
J Org Chem ; 87(5): 2324-2335, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075895

RESUMO

A highly diastereoselective indium-mediated allylation of 2-N-acetyl glycosyl sulfinylimines in brine under mild reaction conditions is reported. The method allows the achievement of a highly remarkable dichotomous selectivity for substrates, providing a single diastereoisomer of the product in 80-98% yield. With chiral (S)-homoallylic sulfinamide (RS)-5 and (RS)-8 formed as key intermediates, two potent anti-influenza agents, zanamivir and zanaphosphor, were synthesized in 50% and 41% overall yields, respectively.


Assuntos
Índio , Sais , Antivirais/farmacologia
14.
ACS Appl Mater Interfaces ; 13(51): 60894-60906, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34914364

RESUMO

Huntington's disease (HD) belongs to protein misfolding disorders associated with polyglutamine (polyQ)-rich mutant huntingtin (mHtt) protein inclusions. Currently, it is indicated that the aggregation of polyQ-rich mHtt participates in neuronal toxicity and dysfunction. Here, we designed and synthesized a polyglutamine-specific gold nanoparticle (AuNP) complex, which specifically targeted mHtt and alleviated its toxicity. The polyglutamine-specific AuNPs were prepared by decorating the surface of AuNPs with an amphiphilic peptide (JLD1) consisting of both polyglutamine-binding sequences and negatively charged sequences. By applying the polyQ aggregation model system, we demonstrated that AuNPs-JLD1 dissociated the fibrillary aggregates from the polyQ peptide and reduced its ß-sheet content in a concentration-dependent manner. By further integrating polyethyleneimine (PEI) onto AuNPs-JLD1, we generated a complex (AuNPs-JLD1-PEI). We showed that this complex could penetrate cells, bind to cytosolic mHtt proteins, dissociate mHtt inclusions, reduce mHtt oligomers, and ameliorate mHtt-induced toxicity. AuNPs-JLD1-PEI was also able to be transported to the brain and improved the functional deterioration in the HD Drosophila larva model. Our results revealed the feasibility of combining AuNPs, JLD1s, and cell-penetrating polymers against mHtt protein aggregation and oligomerization, which hinted on the early therapeutic strategies against HD.


Assuntos
Materiais Biocompatíveis/farmacologia , Proteínas de Drosophila/antagonistas & inibidores , Ouro/farmacologia , Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Nanopartículas Metálicas/química , Compostos Organometálicos/farmacologia , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Drosophila , Proteínas de Drosophila/metabolismo , Ouro/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Teste de Materiais , Compostos Organometálicos/química , Peptídeos/química , Agregados Proteicos/efeitos dos fármacos
15.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946512

RESUMO

For decades, high-resolution 1H NMR spectroscopy has been routinely utilized to analyze both naturally occurring steroid hormones and synthetic steroids, which play important roles in regulating physiological functions in humans. Because the 1H signals are inevitably superimposed and entangled with various JH-H splitting patterns, such that the individual 1H chemical shift and associated JH-H coupling identities are hardly resolved. Given this, applications of thess information for elucidating steroidal molecular structures and steroid/ligand interactions at the atomic level were largely restricted. To overcome, we devoted to unraveling the entangled JH-H splitting patterns of two similar steroidal compounds having fully unsaturated protons, i.e., androstanolone and epiandrosterone (denoted as 1 and 2, respectively), in which only hydroxyl and ketone substituents attached to C3 and C17 were interchanged. Here we demonstrated that the JH-H values deduced from 1 and 2 are universal and applicable to other steroids, such as testosterone, 3ß, 21-dihydroxygregna-5-en-20-one, prednisolone, and estradiol. On the other hand, the 1H chemical shifts may deviate substantially from sample to sample. In this communication, we propose a simple but novel scheme for resolving the complicate JH-H splitting patterns and 1H chemical shifts, aiming for steroidal structure determinations.


Assuntos
Espectroscopia de Ressonância Magnética , Acoplamento Oxidativo , Esteroides/química , Modelos Biológicos , Conformação Molecular , Estrutura Molecular
16.
Chembiochem ; 22(14): 2415-2419, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915022

RESUMO

Secondary metabolites are structurally diverse natural products (NPs) and have been widely used for medical applications. Developing new tools to enrich NPs can be a promising solution to isolate novel NPs from the native and complex samples. Here, we developed native and deuterated chemoselective labeling probes to target phenol-containing glycopeptides by the ene-type labeling used in proteomic research. The clickable azido-linker was included for further biotin functionalization to facilitate the enrichment of labeled substrates. Afterward, our chemoselective method, in conjunction with LC-MS and MSn analysis, was demonstrated in bacterial cultures. A vancomycin-related phenol-containing glycopeptide was labeled and characterized by our labeling strategy, showing its potential in glycopeptide discovery in complex environments.


Assuntos
Fenol
17.
J Agric Food Chem ; 69(11): 3371-3379, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33688734

RESUMO

Partially acetylated chito-oligosaccharides (paCOSs) are bioactive compounds with potential medical applications. Their biological activities are largely dependent on their structural properties, in particular their degree of polymerization (DP) and the position of the acetyl groups along the glycan chain. The production of structurally defined paCOSs in a purified form is highly desirable to better understand the structure/bioactivity relationship of these oligosaccharides. Here, we describe a newly discovered chitinase from Paenibacillus pabuli (PpChi) and demonstrate by mass spectrometry that it essentially produces paCOSs with a DP of three and four that carry a single N-acetylation at their reducing end. We propose that this specific composition of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) residues, as in GlcN(n)GlcNAc1, is due to a subsite specificity toward GlcN residues at the -2, -3, and -4 positions of the partially acetylated chitosan substrates. In addition, the enzyme is stable, as evidenced by its long shelf life, and active over a large temperature range, which is of high interest for potential use in industrial processes. It exhibits a kcat of 67.2 s-1 on partially acetylated chitosan substrates. When PpChi was used in combination with a recently discovered fungal auxilary activity (AA11) oxidase, a sixfold increase in the release of oligosaccharides from the lobster shell was measured. PpChi represents an attractive biocatalyst for the green production of highly valuable paCOSs with a well-defined structure and the expansion of the relatively small library of chito-oligosaccharides currently available.


Assuntos
Quitinases , Quitosana , Acetilação , Animais , Quitina/metabolismo , Quitinases/metabolismo , Quitosana/metabolismo , Oligossacarídeos , Paenibacillus
18.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452205

RESUMO

The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 µM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti-SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Adulto , Animais , Antivirais/química , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Reposicionamento de Medicamentos/métodos , Feminino , Humanos , Masculino , Pandemias , Extratos Vegetais/farmacologia , SARS-CoV-2/genética , Células Vero
19.
Bioorg Chem ; 99: 103835, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305695

RESUMO

A series ofN-acyl glucosamine-bearingtriterpenoidsaponins has been synthesized with cytotoxic activities evaluated against HL-60, PC-3, HCT-116, and CT-26 tumor cells. Saponins incorporated anoleanolic acid (OA) triterpenoidal core exhibited the highest cytotoxic activity. To study the influence of the lengths of acyl-carbon chain onN-position of glucosamine, cells were treated with28-propargylamides and then reacted with an azido-fluorogenic probe under CuAACclickreactions to visualize the intact distributions of these compounds by confocal microscopy and flow cytometry; it was found that cytotoxic-active compounds (30-32) located in the cytosol and inactivecompounds bearing longer carbon chains (33-35) were impenetrable across cell membranes.Our study demonstrated the defined lipophilic acyl-carbon chain length can precisely regulate thecytotoxic activityof saponins, which is useful for the future development of cytotoxic agents.Furthermore, using quantitative proteomics and immunolabeling,the mechanism ofcytotoxicity induced by the synthetic saponin after membrane penetration could be a result of activation of death receptor pathway and inhibition of PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/farmacologia , Glucosamina/farmacologia , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glucosamina/química , Humanos , Estrutura Molecular , Ácido Oleanólico/química , Saponinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Proc Natl Acad Sci U S A ; 117(11): 6014-6022, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123065

RESUMO

Fungal predatory behavior on nematodes has evolved independently in all major fungal lineages. The basidiomycete oyster mushroom Pleurotus ostreatus is a carnivorous fungus that preys on nematodes to supplement its nitrogen intake under nutrient-limiting conditions. Its hyphae can paralyze nematodes within a few minutes of contact, but the mechanism had remained unclear. We demonstrate that the predator-prey relationship is highly conserved between multiple Pleurotus species and a diversity of nematodes. To further investigate the cellular and molecular mechanisms underlying rapid nematode paralysis, we conducted genetic screens in Caenorhabditis elegans and isolated mutants that became resistant to P. ostreatus We found that paralysis-resistant mutants all harbored loss-of-function mutations in genes required for ciliogenesis, demonstrating that the fungus induced paralysis via the cilia of nematode sensory neurons. Furthermore, we observed that P. ostreatus caused excess calcium influx and hypercontraction of the head and pharyngeal muscle cells, ultimately resulting in rapid necrosis of the entire nervous system and muscle cells throughout the entire organism. This cilia-dependent predatory mechanism is evolutionarily conserved in Pristionchus pacificus, a nematode species estimated to have diverged from C. elegans 280 to 430 million y ago. Thus, P. ostreatus exploits a nematode-killing mechanism that is distinct from widely used anthelmintic drugs such as ivermectin, levamisole, and aldicarb, representing a potential route for targeting parasitic nematodes in plants, animals, and humans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Micotoxinas/toxicidade , Pleurotus/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Cílios/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Necrose/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...